Elevated Insulin and Insulin Resistance are Associated with Altered Myelin in Cognitively Unimpaired Middle-Aged Adults

Objective: Insulin regulates metabolism and influences neural health. Insulin resistance (IR) and type II diabetes have been identified as risk factors for Alzheimer disease (AD). Evidence has also suggested that myelinated white matter alterations may be involved in the pathophysiology of AD; however, it is unknown whether insulin or IR affect the underlying myelin microstructure. The relationships between insulin, IR, and myelin were examined, with the hypothesis that IR would be associated with reduced myelin.

Methods: Cognitively unimpaired adults enriched for risk factors for AD underwent multicomponent driven equilibrium single pulse observation of T1 and T2 imaging, a myelin-sensitive neuroimaging technique. Linear regressions were used to test the relationship between homeostatic model assessment of IR, insulin, and myelin water fraction (MWF) as well as interactions with APOE ε4.

Results: Both IR and insulin level were associated with altered myelin content, wherein a significant negative association with MWF was observed in white matter regions and a positive association with MWF was observed in gray matter.

Conclusions: The results suggest that insulin and IR influence white matter myelination in a cognitively unimpaired population. Additional studies are needed to determine the extent to which this may contribute to cognitive decline or vulnerability to neurodegenerative disease.

Introduction

Increasing evidence has suggested a pathophysiological link between Alzheimer disease (AD) and type II diabetes. Individuals with type II diabetes have demonstrated significantly greater 20-year cognitive decline, a precursor to dementia, compared with individuals without type II diabetes (1). Insulin resistance (IR), defined as an altered cellular and systemic response to insulin, is an early feature of type II diabetes and a potential modifiable risk factor for AD (2). IR has been associated with a higher risk for developing dementia because of AD (3), and it has been found to be associated with neurobiological alterations, including lowered regional glucose metabolism (4), higher amyloid burden, (5) and AD pathology as measured in cerebrospinal fluid (CSF) as early as midlife (6). Previous data using diffusion imaging techniques have further suggested type II diabetes and IR are associated with altered brain white matter (7). Given increasing evidence that alterations to oligodendrocytes (8), myelin (9,10), and white matter in general (11) may be associated with AD pathology, understanding the effect of insulin levels and IR on white matter microstructure is of particular importance.

Evidence from animal studies has provided an underlying link between insulin signaling and the myelin sheath, a key constituent of the central nervous system’s white matter. For example, insulin and insulinlike growth factor (IGF)-1 were shown to promote myelin-producing oligodendrocytes during development (12). Studies in insulin deficient mice models have reported a direct effect of insulin on the synthesis of brain cholesterol, a central element to myelin composition, in which replenishing insulin restored cholesterol synthetic pathways in neurons and in glia (13). These data raise the notion that loss of insulin sensitivity may provide an underlying link between altered myelination and IR and type II diabetes.

Funding agencies: Support for this project was provided by the National Institute of Aging (R01 AG037839 [BBB], R01 AG027161 [SCJ]) and ADRC P50 AG033514 (SA and BBB). Project 2), DCD is supported by a Career Development Award provided by the National Institute of Mental Health (K99MH110596).

Disclosure: The authors declared no conflict of interest.

Additional Supporting Information may be found in the online version of this article.

Received: 13 August 2018; Accepted: 30 April 2019; Published online 12 July 2018. doi:10.1002/oby.22558
disrupt mechanisms of myelination, which, in turn, may contribute or mediate vulnerability to neurodegenerative diseases, including AD (14).

While prior studies have examined the effects of IR on diffusion-imaging-based measures, these metrics are nonspecific to myelin (15). Myelin alterations have been observed in preclinical and clinical stages of AD (9); however, no studies to date have examined the association between IR and insulin and in vivo measures of brain myelin content. We aimed to fill this gap by examining the relationship between IR, insulin, and the myelin water fraction (MWF), a quantitative imaging measure of myelin content, using multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) (16). We hypothesized that elevated insulin and IR would be negatively associated with mcDESPOT-derived MWF. A secondary aim of this study was to examine potential interactions between IR and apolipoprotein E (APOE) ε4 carrier status. APOE ε4 is a major susceptibility gene for late-onset AD, and it has been reported to influence underlying brain metabolic and structural relationships (17,18). We hypothesized that negative associations between IR and MWF would differ between carriers and noncarriers of the APOE ε4 allele.

Methods

Experimental design

Participants. A total of 145 cognitively unimpaired adults in late middle age (mean age = 61.4 years [range = 45-74 years], 96 female, 49 male) were recruited into a brain imaging study from two ongoing longitudinal cohort studies, the Wisconsin Registry for Alzheimer’s Prevention (19) and the Wisconsin Alzheimer’s Disease Research Center. Participants in these cohorts are enriched for parental history of AD. Inclusion criteria were blood insulin and glucose levels available from prior fasting blood draw, mcDESPOT data, no self-reported history of diabetes diagnosis, and no clinical diagnosis of a memory disorder or other major medical condition. Presence of type II diabetes was assessed by reviewing self-report diagnoses, usage of diabetes medication such as metformin or glipizide from self-reported medication records, and/or by using American Diabetes Association criteria for type II diabetes (20). Neuroimaging and participant data were evaluated, and participants were excluded as outlined in Figure 1. Briefly, participants taking medications for diabetes (n = 2), with a fasting blood glucose level more than 3 SD above the mean (n = 2), or with neuroimaging data that failed to register to the standardized template because of enlarged ventricles or motion artifacts (n = 12) were excluded. One participant with fasting blood glucose of 127 mg/dL was retained in the analysis, as they were not taking medication for type II diabetes.

The methods for determining parental family history, overnight fasting blood sample collection and processing, and height and weight recording have been previously described (6). To control for effects of body mass, we included “A Body Shape Index” (ABSI), which assesses body mass as calculated using waist circumference, BMI, and height (21). APOE ε4 genotype determination has been described previously (22). Genetic testing was performed at the Waisman Center at the University of Wisconsin-Madison, and participants were categorized as noncarriers (zero ε4 alleles) or carriers (one or two ε4 alleles). Participants also underwent neuropsychological assessment. The Mini-Mental State Examination (MMSE) was used to screen out participants with impaired cognition, using a cut score of 27 (23). We excluded 3 participants from analyses based on a MMSE score lower than 27, resulting in a final sample of 126 participants (Table 1).

Calculations of IR and ABSI. IR was indexed by homeostatic model assessment of IR ([glucose × insulin]/405) determined from fasting blood glucose and insulin levels. BMI (weight in kilograms/height in meters squared) was calculated and used to calculate ABSI ([waist circumference in meters]/[BMI2/3 × height in meters1/2]) (21). Magnetic resonance imaging (MRI) data acquisition and processing. Participants underwent imaging on a 3-T Discovery MR750 scanner (GE Healthcare, Waukesha, Wisconsin) with an eight-channel receive-only head coil. mcDESPOT image acquisition (12 minutes total) consisted of spoiled gradient echo (SPGR) and balanced steady-state free precession (bSSFP) sequences acquired with eight flip angles (9,16). bSSFP images were acquired twice, with and without radiofrequency phase cycling, for correction of magnetic field (B0) inhomogeneities (24). Actual flip-angle imaging was acquired for correction of transmit field (B1) inhomogeneities (25). Images were acquired in the sagittal orientation, with a field of view of 25.6 cm by 25.6 cm by 16.8 cm and an isotropic voxel
resolution of 2 mm. A high-resolution 3D Brain Volume Imaging (BRAVO) T1-weighted inversion-prepared sequence (repetition time (TR) = 8.1 milliseconds, echo time (TE) = 3.2 milliseconds, inversion time = 450 milliseconds, flip angle = 12 degrees, field of view = 256 mm, matrix = 256 × 256 × 156, section thickness = 1.0 mm) and a fluid-attenuated inversion recovery (FLAIR) sequence (TR = 6,000 milliseconds, TE = 123 milliseconds, inversion time = 1,869 milliseconds, flip angle = 90 degrees, field of view = 256 mm, matrix = 256 × 256, section thickness = 2.0 mm) were also acquired to identify white matter hyperintensities (WMH).

SPGR and bSSFP data were fitted voxelwise to the mcDESPOT model using in-house software to estimate MWF, T1 and T2 of fast-and slow-relaxing components, exchange rate, and the relative signal fraction of intra- and extra-axonal water compartment (16). A third nonexchanging CSF compartment was included in the model to minimize the bias from CSF signal contamination (26). Only MWF maps were considered in this study. The highest flip-angle SPGR image was aligned to the Montreal Neurological Institute (MNI) template using the Advanced Normalization Tools software (27). This transformation was applied to each MWF map, aligning MWF to the MNI template. Registered MWF maps were smoothed using a 6-mm full-width-at-half-map kernel.

WMH, presumed to be due to ischemia, may confound interpretation of mcDESPOT MWF results. Thus, WMH, as a ratio to total intracranial volume (ICV), was included as a covariate in all regression models. WMH segmentation was achieved using the T1-weighed BRAVO and T2-weighed FLAIR images and the Lesion Segmentation Toolbox version 1.2.2 in SPM8 (FIL Methods Group, UCL, London, UK) (28). Lesions were seeded based on spatial and intensity probabilities from the T1-weighed BRAVO images and hyperintense outliers on the T2-weighed FLAIR images, a method that has been validated with high agreement (R² = 0.94) to manual tracing (28). ICV was calculated from T1-weighed BRAVO images using a “reverse brain masking” method. Using segmentation procedures in SPM12, gray, white, and CSF International Consortium for Brain Mapping probability maps were created and then summed to produce an ICV probability map. The inverse deformation field from unified segmentation was applied to the ICV probability map to produce an ICV mask in native space. A threshold of 90% was applied to this participant-specific ICV probability map, and the total volume was extracted. WMH was divided by ICV and multiplied by 100 to give a ratio in units of percent of ICV and then log base 10 transformed.

Statistical analysis

Multiple voxelwise regression analysis using SPM12 was conducted to test for an association between IR and MWF. Further analyses explored the specific effect of insulin on MWF as well as tested for potential interactions with APOE ε4 status. Covariates included age, sex, APOE ε4 status, ABSI, and log₁₀ of WMH ratio, with predictors of interest either being IR, insulin, or APOE ε4 × IR. Monte Carlo simulations (AlphaSim; AFNI, National Institute of Mental Health, Bethesda, Maryland) were performed to determine the minimum cluster-extent necessary for significance when correcting for multiple comparisons using the family-wise error rate with a primary voxel-level threshold of P < 0.005. Contiguous clusters of a minimum extent of 174 voxels were determined to be significant (P < 0.05, corrected). An *MRI Atlas of Human White Matter* was used to identify regions of significant effect (29), while SPM12 was used to warp results to MNI space for reporting. Multiple regression analyses were restricted to gray and white matter regions using a whole-brain mask.

Results

Main effect of IR on MWF

Voxelwise regressions between IR and MWF revealed widespread associations. Higher IR was associated with lower MWF in areas localized within deep white matter, including the parieto-occipital white matter, posterior thalamic radiation, superior occipital gyrus white matter, and white matter of the cuneal cortex (Figure 2 and Table 2). Higher IR was also associated with higher MWF in several cortical white matter regions (Figure 2 and Table 2). Inspection
of these results suggested that this effect may be due in part to participants with extreme IR; thus, we tested these associations in participants with IR less than 2 SD of the mean (n = 121). Similar to the previous analysis, higher IR was associated with higher MWF in frontotemporal regions (Supporting Information Figure S1 and Supporting Information Table S1). Higher IR was also associated with lower MWF in parieto-occipital white matter (Supporting Information Figure S2 and Supporting Information Table S2); however, this cluster did not survive multiple comparison correction. Similar associations were observed between insulin concentration and MWF (Figure 3 and Table 3).

Hormone therapy

Hormone therapy may impact brain structure and white matter (30). In order to rule out potential confounds because of hormone therapy, a follow-up analysis to test whether insulin or IR differed among individuals on hormone therapy was performed. We found no difference in insulin and IR levels between participants on hormone therapy (n = 23) versus those who were not on therapy (n = 103) in our sample.

Discussion

White matter alterations have been previously reported among individuals affected by type II diabetes (31-35); however, the effect of IR on myelin specifically has been unclear. In this study, we used a quantitative MRI technique known as mcDESPOT to examine the effect of IR on MWF, a neuroimaging proxy of myelin content, in a population of cognitively unimpaired middle-aged adults. Higher IR and insulin were observed to be associated with lower MWF in parieto-occipital white matter, posterior thalamic radiations, superior occipital gyrus white matter, and cuneus white matter, while higher IR and insulin...
were associated with higher MWF in several cortical regions, including frontal, parietal, and temporal cortices. This study is the first, to the best of our knowledge, to demonstrate insulin and IR to have a significant influence on the brain’s myelin content, and it further complements an increasing literature that draws attention to the impact of IR on the brain in late middle age.

The results of the present study align with previous findings using alternative neuroimaging techniques to assess the white matter microstructure. For example, previous studies using diffusion tensor imaging (DTI) have detected significant associations between IR and measures of white matter microstructure in cognitively unimpaired individuals, with decreased axial diffusivity observed in individuals with high homeostatic model assessment of IR in parietal and temporal lobe white matter (36). Though mcDESPOT-derived MWF differs from measures of DTI, the negative associations between MWF and IR observed are consistent and complement these results, suggesting that higher IR and insulin concentrations may contribute to underlying myelin microstructure alterations. Furthermore, positive associations observed in cortical brain regions suggest that the effect of insulin and IR on cortical myelin may be different than the effect in deeper myelin-rich brain regions (37). Cortical gray matter contains a significant number of myelinated fibers; however, the composition of cortical myeloarchitecture differs from that of deep white matter, which may underlie this observed differential effect. Additionally, individuals with higher IR often have higher concentrations of insulin, as the body produces more to combat the IR. As previously noted, insulin was reported to promote myelin-producing oligodendrocytes during development (12); thus, we might speculate that higher insulin concentrations, as a result of higher IR, could foster myelination in some brain regions. Nevertheless, additional animal and human studies are necessary to further elucidate these neurobiological mechanisms.

Lower MWF in relation to higher insulin and IR was largely localized to posterior brain regions, while higher MWF in relation to higher insulin and IR was primarily observed in frontal, parietal, and temporal cortical brain regions (Figures 2,3). Posterior localization of white matter abnormalities has also been observed among individuals with mild cognitive impairment (38) and other aging populations (39), while several of these regions were shown to be altered in type II diabetes (40). We and others have also shown frontal and temporal white matter regions to exhibit extensive white matter alterations in aging populations (9-11); however, less is known about how myelinated fibers of these regions, particularly within the cortex, are affected by insulin and IR. While the results from the current study are in line with findings within the literature, our findings also suggest that myelin content in different brain regions may be differentially susceptible to the effects of insulin and IR. Importantly, while many of these brain regions are associated with the convergence of multimodal inputs and processing of memory, spatial, and semantic information (41,42), the functional significance of lower and/or higher MWF in these regions is unknown. The population evaluated here was cognitively unimpaired (MMSE score equal to or greater than 27) (23), and thus it is unclear whether the impact of IR or insulin on myelin has behavioral relevance or whether it will contribute to vulnerability for neurodegenerative disease. Longitudinal follow-up is necessary to address this.

While the mechanisms by which IR and insulin impact myelin in humans are largely unknown, IR-induced alterations to cholesterol metabolism may be a possible mechanism behind the myelin changes observed in this study. Rodent studies have directly linked brain cholesterol synthesis to insulin deficiency (13), and insulin was shown to regulate activity of neuronal and glial sterol regulatory element-binding protein 2 activity (13), the transcription factor that regulates expression of genes involved in cholesterol synthesis. In the periphery, insulin is involved in stimulating the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (13) and suppressing sterol regulatory element-binding protein 2 activity (14). Thus, a reduction in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase and an increase in sterol regulatory element-binding protein 2 activity may contribute to increased cholesterol synthesis, leading to alterations in myelin content. Moreover, the relationship between insulin and IR and cholesterol synthesis may be a possible mechanism for the observed negative associations with MWF in higher IR observed in the present study. Therefore, future studies are necessary to clarify the mechanisms by which insulin and IR affect brain cholesterol synthesis.

Table 2: Association of insulin resistance on MWF in brain regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates (mm)</th>
<th>T value</th>
<th>Observed extent threshold</th>
<th>Cluster level P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR positive direction cluster data (n=126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right superior precentral region</td>
<td>54, 14, 30</td>
<td>4.29</td>
<td>1,027</td>
<td>0.001</td>
</tr>
<tr>
<td>Right superior temporoparietal region</td>
<td>28, −102, 0</td>
<td>4.24</td>
<td>1,185</td>
<td>0.000</td>
</tr>
<tr>
<td>Right inferior temporal region</td>
<td>34, 12, −42</td>
<td>4.11</td>
<td>892</td>
<td>0.001</td>
</tr>
<tr>
<td>Right superior temporoparietal region</td>
<td>50, −58, 26</td>
<td>4.03</td>
<td>621</td>
<td>0.005</td>
</tr>
<tr>
<td>Left parieto-occipital region</td>
<td>−22, −106, 0</td>
<td>4.00</td>
<td>509</td>
<td>0.009</td>
</tr>
<tr>
<td>Left inferior middle region</td>
<td>−40, −68, 2</td>
<td>3.81</td>
<td>427</td>
<td>0.015</td>
</tr>
<tr>
<td>Left superior temporal region</td>
<td>−56, −60, 22</td>
<td>3.74</td>
<td>286</td>
<td>0.040</td>
</tr>
<tr>
<td>Right middle superior frontal region</td>
<td>32, 20, 58</td>
<td>3.73</td>
<td>294</td>
<td>0.038</td>
</tr>
<tr>
<td>Left superior medial frontal region</td>
<td>−52, −2, 46</td>
<td>3.54</td>
<td>405</td>
<td>0.017</td>
</tr>
<tr>
<td>Right superior temporal region</td>
<td>68, −8, −2</td>
<td>3.60</td>
<td>640</td>
<td>0.004</td>
</tr>
<tr>
<td>Right superior frontal region</td>
<td>24, 62, −6</td>
<td>3.57</td>
<td>398</td>
<td>0.018</td>
</tr>
<tr>
<td>IR negative direction cluster data (n=126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parieto-occipital projections of corpus callosum</td>
<td>−10, −84, 14</td>
<td>4.80</td>
<td>3,801</td>
<td>0.000</td>
</tr>
<tr>
<td>Cuneus white matter</td>
<td>10, −76, 14</td>
<td>4.22</td>
<td>657</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Extent threshold (k)=174 voxels; P<0.005, uncorrected for positive and negative directional multiple regression analyses. All significant voxel-level P values were less than 0.005. MWF, myelin water fraction; IR, insulin resistance.
Insulin Resistance Linked with Altered Myelin O’Grady et al.

Figure 3 Main effect of insulin on MWF. Multi-section rendering of statistically significant results relating insulin and MWF. Negative relationships are shown in blue and positive relationships in red, overlaid on the MNI template. For visualization, scatterplots show the overall association between mean MWF and insulin from the significant clusters. Results were localized in similar brain regions as the associations between MWF and IR.

TABLE 3 Association of insulin on MWF in brain regions

<table>
<thead>
<tr>
<th>Region</th>
<th>Coordinates (mm)</th>
<th>T value</th>
<th>Observed extent threshold</th>
<th>Cluster level P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin positive direction cluster data (n=126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right inferior frontal gyrus</td>
<td>54, 14, 30</td>
<td>4.52</td>
<td>911</td>
<td>0.001</td>
</tr>
<tr>
<td>Right cuneus region</td>
<td>52, −60, 24</td>
<td>4.18</td>
<td>748</td>
<td>0.002</td>
</tr>
<tr>
<td>Right inferior temporal pole region</td>
<td>30, 4, −42</td>
<td>4.10</td>
<td>832</td>
<td>0.001</td>
</tr>
<tr>
<td>Right occipital region</td>
<td>36, −88, 6</td>
<td>4.08</td>
<td>1046</td>
<td>0.000</td>
</tr>
<tr>
<td>Left occipital region</td>
<td>−40, −68, 2</td>
<td>3.86</td>
<td>427</td>
<td>0.015</td>
</tr>
<tr>
<td>Left cuneus region</td>
<td>−22, −106, 0</td>
<td>3.85</td>
<td>326</td>
<td>0.030</td>
</tr>
<tr>
<td>Right superior frontal region</td>
<td>32, 20, 58</td>
<td>3.76</td>
<td>323</td>
<td>0.031</td>
</tr>
<tr>
<td>Right superior temporal gray matter region</td>
<td>68, −8, 0</td>
<td>3.57</td>
<td>430</td>
<td>0.015</td>
</tr>
<tr>
<td>Insulin negative direction cluster data (n=126)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parieto-occipital projections of corpus callosum</td>
<td>−10, −84, 14</td>
<td>4.69</td>
<td>3980</td>
<td>0.000</td>
</tr>
<tr>
<td>Cuneus white matter</td>
<td>10, −76, 14</td>
<td>4.19</td>
<td>556</td>
<td>0.007</td>
</tr>
<tr>
<td>Parietal white matter</td>
<td>−10, −46, 56</td>
<td>4.04</td>
<td>263</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Extent threshold (k)=174 voxels; P<0.005, uncorrected for positive and negative directional multiple regression analyses. All significant voxel-level P values were less than 0.005.

MWF, myelin water fraction.
reduce, an enzyme that helps in the synthesis of mevalonate, the rate-limiting step of cholesterol biosynthesis (43). Data from this study indicate that myelin content is related to peripheral insulin sensitivity; however, additional studies are needed to link these findings to brain cholesterol synthesis.

Serum insulin and CSF insulin are positively correlated in normoglycemic participants; however, lower CSF insulin concentrations are observed among IR participants, suggesting altered transport of insulin across the blood-brain barrier in people with higher peripheral IR (3). Interestingly, patients with AD have lower CSF insulin levels as well as higher plasma insulin levels compared with unimpaired controls (2). Both insulin and IGF receptors were shown to be expressed abundantly in the brain and to relay signaling to a shared downstream intracellular pathway (12). Ablation of the IGF-1 receptor gene in transgenic mice led to deficiencies in myelinization and a reduction in the populations of neurons (12). Little is yet known about the effects of IR on brain myelin in humans in vivo, but these studies, taken together with our findings, suggest that peripheral IR is associated with myelin content. This in turn could negatively affect neural signaling and potentially contribute to axonal degeneration. Studies from our group suggest that IR is associated with neurodegeneration as shown on neuroimaging (7) and CSF biomarkers, particularly among APOE ε4 carriers (6). Though an interaction between IR and APOE ε4 genotype on MWF did not withstand correction for multiple comparisons, uncorrected interaction analyses suggest APOE ε4 allele carrier status may be a contributing factor. Future studies with larger sample sizes may be informative for elucidating such interactions.

Multicomponent relaxometry techniques, such as mcDESPOT, are relatively new to the field, and they aim to decompose the measured MRI signal into contributions from discrete microstructural water compartments and to quantify characteristics from these water pools to provide a specific measure of myelin content. MWF estimates from mcDESPOT have been shown to provide sensitive measures of myelin content in a cuprizone mouse model (44), track early myelin development in infants and children (17), and reveal myelin alterations in preclinical AD populations (9). While such studies have given confidence that mcDESPOT is strongly sensitive, if not specific, to myelin content, future histological studies are critical for evaluating the microstructural imaging techniques. Furthermore, additional analyses combining MWF with other imaging measures, such as those acquired from DTI or magnetization transfer imaging, may provide greater insight about the relationship of myelin content to other microstructural changes that co-occur with changes to insulin sensitivity. Such investigations are likely to be beneficial for future investigations.

A few limitations deserve note. In our study, fasting glucose and insulin measurements were plasma based and thus were indicative of peripheral IR, not a direct measurement of central IR. Future studies will examine participants longitudinally to elucidate the temporal relationship between IR and myelin changes over time, especially in high-risk participants that have the potential to go on to develop AD. Including participants with high IR yielded a significant effect of IR, but this effect was attenuated when examining more moderate levels of IR. It is possible that there is a threshold at which negative impacts are observed or that those individuals with the highest IR have also had a longer duration of metabolic dysregulation. Another important consideration will be to incorporate histopathological and immunohistochemical methods to quantify white matter in postmortem analyses (45). A noteworthy model of myelin involvement in AD pathogenesis highlights the observation that medications targeting type II diabetes may have myelin-protecting effects, which in turn may translate into efficacy in some neurodegenerative diseases, including AD (10).

Acknowledgments

We offer sincere thanks to colleagues from the Wisconsin Alzheimer’s Disease Research Center and Wisconsin Registry for Alzheimer’s Prevention, including Charles Illingworth, Jen Oh, Vince Pozorski, Kelsey Melay, Nicholas Vanderwerker, and especially the late Jitka Sojkova. Finally, we thank our dedicated participants because without them, this project would not be possible.

© 2019 The Obesity Society

References

