Proximity to Parental Symptom Onset and Amyloid-β Burden in Sporadic Alzheimer Disease

Sylvia Villeneuve, PhD; Jacob W. Vogel, BA; Julie Gonneaud, PhD; Alexa Pichet Binette, MSc; Pedro Rosa-Neto, MD, PhD; Serge Gauthier, MD, FRCP; Randall J. Bateman, MD; Anne M. Fagan, PhD; John C. Morris, MD; Tammie L. S. Benzinger, MD, PhD; Sterling C. Johnson, PhD; John C. S. Breitner, MD, MPH; Judges Poirier, PhD, MD (Hon); for the Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) Research Group

IMPORTANCE Alzheimer disease (AD) develops during several decades. Presymptomatic individuals might be the best candidates for clinical trials, but their identification is challenging because they have no symptoms.

OBJECTIVE To assess whether a sporadic parental estimated years to symptom onset calculation could be used to identify information about amyloid-β (Aβ) levels in asymptomatic individuals with a parental history of AD dementia.

DESIGN, SETTING, AND PARTICIPANTS This cohort study analyzed Aβ1-42 in cerebrospinal fluid (CSF) specimens from 101 cognitively normal individuals who had a lumbar puncture as part of the Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) cohort from September 1, 2011, through November 30, 2016 (374 participants were enrolled in the cohort during this period). The study estimated each participant’s proximity to his/her parent’s symptom onset by subtracting the index relative’s onset age from his/her current age. The association between proximity to parental symptom onset and Aβ levels was then assessed using apolipoprotein E ε4 (APOE4) status and sex as interactive terms. These analyses were performed again in 2 independent cohorts using CSF and Pittsburgh compound B carbon 11–labeled positron emission tomography (PIB-PET) Aβ biomarkers: the Adult Children Study (ACS) and the Wisconsin Registry for Alzheimer Prevention (WRAP) cohorts.

MAIN OUTCOMES AND MEASURES The association between proximity to parental symptom onset and Aβ burden in asymptomatic individuals with a parental history of sporadic AD.

RESULTS The present analysis included a subset of 101 PREVENT-AD individuals (mean [SD] age, 61.8 [5.1] years; 30 [29.7%] male), 128 ACS participants (112 participants underwent CSF measurement: mean [SD] age, 63.4 [5.1] years; 31 [27.7%] male; and 107 underwent PIB-PET: mean [SD] age, 64.6 [5.3] years; 27 [25.2%] male), and 135 WRAP participants (85 participants underwent CSF measurement: mean [SD] age, 59.9 [6.0] years; 27 [31.8%] male; and 135 underwent PIB-PET: mean [SD] age, 59.6 [6.1] years; 43 [31.9%] male). In the PREVENT-AD cohort, individuals approaching their parent’s onset age had lower CSF Aβ1-42 levels (range, 402–1597; B = −9.09, P = .04). This association was stronger in APOE4 carriers (B = −17.9, P = .03) and women (B = −19.8, P = .02). In the ACS cohort, the main association was replicated using PIB-PET data, and the sex interaction was replicated using CSF and PIB-PET data. In the WRAP cohort, the results were not replicated using cross-sectional data, but the main association and the PIB-PET interaction were replicated using PIB-PET longitudinal data.

CONCLUSIONS AND RELEVANCE These results suggest that proximity to parental symptom onset may help estimate Aβ biomarker changes in women or APOE4 carrier asymptomatic individuals with a parental history of sporadic AD.
Parental Symptom Onset and Amyloid-β Burden in Alzheimer Disease

No treatment currently exists to stop or prevent Alzheimer disease (AD). The best time window to prevent AD is likely when individuals are still asymptomatic, before extensive neuronal degeneration has occurred. Identifying asymptomatic individuals is challenging and expensive, posing significant difficulties for the current generation of clinical trials.

In autosomal dominant AD (ADAD), symptom onset is deterministic across generations. It is therefore possible to calculate the estimated years to symptom onset (EYO) score in individuals with ADAD by subtracting their parent’s onset age from their current age.1 With this approach, ADAD findings suggest that a decrease in cerebrospinal fluid (CSF) amyloid-β1-42 (Aβ1-42) concentrations can be detected 25 years before expected symptom onset and brain Aβ aggregation can be detected 15 years before expected symptom onset.1 The EYO score can therefore be used in ADAD to estimate AD biomarker abnormalities and potentially guide the optimal timing of treatments.

The heritability of sporadic AD dementia is estimated at approximately 70%,2,3 with age at onset heritability being 67% to 87% in early-onset AD.4 Whether the parent’s age at onset can help determine biomarker abnormalities in AD is not known. The aim of the current study was to test whether a sporadic parental EYO calculation could be used to identify information about Aβ levels in asymptomatic individuals with a parental history of AD dementia. Given the heterogeneity of AD and because apolipoprotein E ε4 (APOE4)4,5 and female sex6,7 increase the risk of AD, we further assessed whether the association between sporadic parental EYO score and Aβ levels is influenced by these risk factors. The current study was performed using CSF Aβ1-42 data from the Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) cohort.8 We repeated the analysis in the Adult Children Study (ACS)9,10 and the Wisconsin Registry for Alzheimer Prevention (WRAP) cohort11 using CSF and Pittsburgh compound B carbon 11-labeled positron emission tomography (PIB-PET) Aβ biomarkers.

Methods

Participants and Study Design
All individuals included in the current study had a parental history of AD and Aβ quantification (CSF and/or PIB-PET). The Table gives the participants’ characteristics. All specified procedures were approved by the local ethics committees of each respective cohort (institutional review board of McGill University Faculty of Medicine, Washington University Human Research Protection Office, and University of Wisconsin Institutional Review Board), and all participants provided signed informed consent forms before participation. Data were deidentified.

PREVENT-AD Cohort
Recruitment for the PREVENT-AD cohort was begun in 2011 with enrollment of individuals from the greater Montreal metropolitan area (details in the eMethods in the Supplement). The PREVENT-AD study participants must satisfy the following conditions: (1) a family history of AD-like dementia, (2) 60 years or older at study entry or 55 to 59 but less than 15 years from their siblings’ or parents’ age at symptom onset, and (3) normal cognition and no other major neurologic disease.8 Data from 374 individuals were collected from September 1, 2011, through November 30, 2016, and archived in the PREVENT-AD internal data release 3.0. The present analysis included a subset of 101 PREVENT-AD individuals with a parental history of AD who underwent lumbar puncture (LP) to assess CSF Aβ1-42 concentration. Four individuals included in the current study were suspected to have mild cognitive impairment based on an extensive neuropsychological battery. All 101 individuals had a Clinical Dementia Rating (CDR) of 012 and a score above 23 on the Montreal Cognitive Assessment.13

To assess the robustness of our results, we conducted similar analyses in 2 independent cohorts of individuals with a parental history of AD: the ACS9,10 and WRAP.11 Because these 2 studies included PIB-PET and CSF Aβ1-42 assessments, we included the participants who had either or both of these assessments. Longitudinal PIB-PET data were available for both cohorts; thus, we also explored the association between sporadic parental EYO score and annual rate of change in PIB-PET indexes.

ACS Cohort
The ACS is a longitudinal study enrolling cognitively normal individuals that was conducted at the Knight Alzheimer Disease Research Center at Washington University School of Medicine in St Louis, Missouri.9,10 The ACS eligibility criteria include age at entry between 45 and 75 years and normal cognition, defined as a CDR of 0. A total of 128 participants 55 years and older were included in the study, among whom 112 underwent LP and 107 underwent PIB-PET. Fifty-nine individuals underwent PIB-PET a second time. The mean (SD) delay between the 2 scans was 3 years (mean [SD], 36.1 [17.3] months; median, 36 months; range, 13.0-106.3 months).

WRAP Cohort
WRAP is a longitudinal study conducted by the Wisconsin Alzheimer Institute at the University of Wisconsin School of Medicine and Public Health that enrolls individuals free of dementia.11,14 Participants are aged 40 to 65 years at entry and...
were free of dementia based on a neuropsychological evaluation with expert review. The cohort therefore included cognitively normal individuals (CDR, 0) and individuals with mild cognitive impairment (CDR, 0.5). A total of 135 participants 48 years and older were included in the study. The PIB-PET scans were available for all participants. Among them, 85 also underwent LP. An overlapping 92 participants had undergone PIB-PET a second time after an interval of approximately 2 years (mean [SD], 26.7 [3.5] months; median, 26.2 months; range, 20.5-40.7 months).

Aβ Assessments

The CSF from the PREVENT-AD cohort was collected by LP in the morning under fasting conditions. Measurement of Aβ1-42 was determined by enzyme-linked immunosorbent assay (INNOTEST; Fujirebio, formerly Innogenetics). In the ACS and WRAP cohorts, the CSF samples were acquired and assayed using previously published procedures (details are provided in the Methods in the Supplement).15,16

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PREVENT-AD (n = 101)</th>
<th>ACS (n = 128)</th>
<th>WRAP (n = 135)</th>
<th>Main Effects P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>CSF: 61.8 (5.1) [55 to 78]</td>
<td>63.4 (5.1) [55 to 76]</td>
<td>59.9 (6.0) [48 to 70]</td>
<td><.001<sup>b,c,d</sup></td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>64.6 (5.3) [55 to 76]</td>
<td>59.6 (6.1) [46 to 71]</td>
<td><.001</td>
</tr>
<tr>
<td>Male, No. (%)</td>
<td>CSF: 30 (29.7)</td>
<td>31 (27.7)<sup>e</sup></td>
<td>27 (31.8)</td>
<td>.82</td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>27 (25.2)<sup>e</sup></td>
<td>43 (31.9)</td>
<td>.26</td>
</tr>
<tr>
<td>Educational level</td>
<td>CSF: 15.0 (3.0) [10 to 27]</td>
<td>15.9 (2.3) [11 to 20]</td>
<td>16.5 (2.5) [12 to 25]</td>
<td>.002<sup>b,c</sup></td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>16.0 (2.2) [11 to 20]</td>
<td>16.3 (2.6) [12 to 25]</td>
<td>.32</td>
</tr>
<tr>
<td>APOE4, No. (%)</td>
<td>CSF: 39 (38.6)</td>
<td>49 (43.8)<sup>e</sup></td>
<td>36 (42.4)</td>
<td>.70</td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>50 (46.7)<sup>e</sup></td>
<td>63 (46.7)</td>
<td>.99</td>
</tr>
<tr>
<td>CDR of 0, No. (%)</td>
<td>CSF: 101 (100)</td>
<td>128 (100)</td>
<td>49 (71.0)<sup>e</sup></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>100</td>
<td>82 (75.3)<sup>f</sup></td>
<td>NA</td>
</tr>
<tr>
<td>MMSE score</td>
<td>CSF: 74.3 (7.4) [55 to 90]</td>
<td>73.6 (7.6) [51 to 93]</td>
<td>73.8 (8.0) [55 to 91]</td>
<td>.80</td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>74.1 (7.6) [51 to 93]</td>
<td>73.2 (8.3) [45 to 91]</td>
<td>.41</td>
</tr>
<tr>
<td>Age of parent at disease onset, y</td>
<td>CSF: -12.5 (6.7) [-29 to 7]</td>
<td>-10.2 (8.7) [-33 to 13]</td>
<td>-13.9 (7.4) [-28 to 6]</td>
<td>.004<sup>c,d</sup></td>
</tr>
<tr>
<td></td>
<td>PIB-PET: NA</td>
<td>-9.5 (9.2) [-36 to 13]</td>
<td>-13.6 (8.0) [-34 to 13]</td>
<td><.001<sup>d</sup></td>
</tr>
<tr>
<td>CSF Aβ1-42</td>
<td>1056 (284) [402 to 1597]</td>
<td>665 (252) [202 to 1615]</td>
<td>750 (235) [280 to 1763]</td>
<td>NA<sup>h</sup></td>
</tr>
<tr>
<td>PIB-PET index</td>
<td>0.28 (0.34) [0.02 to 1.57]</td>
<td>1.18 (-0.18) [1.00 to 2.07]</td>
<td>NA<sup>h</sup></td>
<td></td>
</tr>
<tr>
<td>PIB-PET rate of change</td>
<td>0.033 (0.041) [-0.03 to 0.16]</td>
<td>0.005 (0.029) [-0.07 to 0.10]</td>
<td>NA<sup>h</sup></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Aβ, amyloid-β; ACS, Adult Children Study; APOE, apolipoprotein E; CDR, Clinical Dementia Rating; CSF, cerebrospinal fluid; EYO, estimated years to symptom onset; MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; NA, not applicable; PIB-PET, Pittsburgh compound B carbon-11–labeled positron emission tomography; PREVENT-AD, Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease; WRAP, Wisconsin Registry for Alzheimer Prevention.

^a Data are expressed as mean (SD) [range] unless otherwise indicated. In the ACS cohort, n = 112 in the CSF group and n = 107 in the PIB-PET group. In the WRAP cohort, n = 85 in the CSF group and n = 135 in the PIB-PET group.

^b Difference between PREVENT-AD and ACS is significant.

^c Difference between PREVENT-AD and WRAP is significant.

^d Difference between ACS and WRAP is significant.

^e Information missing for 16 individuals.

^f Information missing for 26 individuals.

^g Calculated as the age of the participant at assessment minus the age of the parent at symptom onset.

^h Distribution of Aβ values (CSF and PIB-PET) cannot be statistically compared among the 3 cohorts because of differences in quantification methods.

ⁱ Mean cortical potential binding was computed for the ACS cohort, whereas distributed volume ratios were computed for the WRAP cohort (eMethods in the Supplement).
of brain Aβ accumulation in the ACS (n = 59) and WRAP (n = 92) cohorts. To do so, the PIB-PET annual rate of change was calculated as follows: amyloid scores at follow-up minus amyloid scores at baseline divided by the interval (in years) between the 2 scans.

Sporadic Parental EYO Score Calculation
The sporadic parental EYO score was calculated as the age of the participant at assessment minus the age of the parent at symptom onset.1 If an individual had 2 parents with a history of AD dementia, the age of the parent with the earliest onset was used to calculate the sporadic parental EYO score. The age of the parent at symptom onset corresponds to the age at which the family observed significant cognitive or memory changes in the PREVENT-AD and WRAP cohorts, whereas it corresponds to the age at which dementia symptoms began in the ACS cohort (eMethods in the Supplement).

APOE Genotype
APOE genotype in the PREVENT-AD cohort has previously been described (eMethods in Supplement).17 For statistical analysis, participants were classified as APOE4 carriers (1 or 2 ε4 alleles) or noncarriers (no ε4 allele). A similar approach was used in the 2 other cohorts.

Statistical Analysis
We examined differences among the 3 cohorts using linear regression analyses for continuous variables and Pearson χ² tests for categorical variables. In the PREVENT-AD cohort, independent linear regression analyses were first used to determine CSF Aβ1-42 level (dependent variable) by age while controlling for sex and educational level and CSF Aβ1-42 level (dependent variable) by parent’s age at symptom onset while controlling for sex and educational level. A step-by-step hierarchical linear regression analysis was then used to determine CSF Aβ1-42 level by age while controlling for sex and educational level (model A, step 1, same as previous analysis); CSF Aβ1-42 level by sporadic parental EYO score while controlling for age, sex, and educational level (model A, step 2); and the interaction between sporadic parental EYO score and sex (sporadic parental EYO score × sex) on CSF Aβ1-42 level while including age, sex, educational level, and sporadic parental EYO score as covariates (model A, step 3). A similar hierarchical analysis (model B) was used to assess the interaction between sporadic parental EYO score and APOE (sporadic parental EYO score × APOE status). APOE status was included in this second and independent model. Exploratory analyses also assessed parental sex as a possible interactive term.

Models A and B were replicated in the 2 validation cohorts (ACS and WRAP) using baseline CSF Aβ1-42 values and PIB-PET values. Annual rate of change in PIB-PET binding was also investigated in the ACS and WRAP cohorts. One ACS participant and 1 WRAP participant with high baseline PIB-PET uptake were removed from the longitudinal analysis because they had a decrease in PIB-PET binding over time, which suggests that they could no longer accumulate additional brain Aβ.18,19

All analyses were completed using SPSS software, version 20 (IBM Inc). A 2-sided P < .05 was considered to be significant.

Results
The present analysis included a subset of 101 PREVENT-AD individuals (mean [SD] age, 61.8 [5.1] years; 30 [29.7%] male), 128 ACS participants (112 participants underwent CSF measurement: mean [SD] age, 63.4 [5.1] years; 31 [27.7%] male; and 107 underwent PIB-PET: mean [SD] age, 64.6 [5.3] years; 27 [25.2%] male), and 135 WRAP participants (85 participants underwent CSF measurement: mean [SD] age, 59.9 [6.0] years; 27 [21.8%] male; and 135 underwent PIB-PET: mean [SD] age, 59.6 [6.1] years; 43 [31.9%] male).

Association Between Sporadic Parental EYO Score and Aβ Burden
Cross-sectional analyses from the PREVENT-AD cohort demonstrated no association between age and CSF Aβ1-42 level or between parent’s age at symptom onset and CSF Aβ1-42 level but found a reduction in CSF Aβ1-42 levels as participants approached the parent’s age at onset (eFigure in the Supplement). Adding sporadic parental EYO score as a covariate into the model that already included age increased the explained variance (step 1 with age: r² = 0.034, F change = 1.135; step 2 with age and sporadic parental EYO score: r² = 0.077, F change = 4.441; difference between step 1 and step 2: P = .04; effect of sporadic parental EYO: B = −9.09, P = .04). An interaction was found between sporadic parental EYO score and sex (B = −19.8, P = .02), suggesting that the association between sporadic parental EYO score and Aβ1-42 level was stronger among women than among men (Figure 1 and eTable 1 in the Supplement). An interaction was also found between sporadic parental EYO score and APOE status (B = −17.9, P = .03), revealing a stronger association in APOE4 carriers than in noncarriers.

In the ACS cohort, age was associated with CSF Aβ1-42 and PIB-PET data, but these associations were no longer significant when sporadic parental EYO score was included in the models (eTable 2 in the Supplement). The association between sporadic parental EYO score and Aβ burden was replicated in the members of the ACS cohort who underwent PIB-PET, with an increase of brain Aβ deposition as individuals approached their parent’s age at symptom onset (Figure 2 and eTable 2 in the Supplement). The interaction between sporadic parental EYO score and sex was also replicated using CSF Aβ1-42 and PIB-PET data. In addition, longitudinal ACS PIB-PET data further suggest that women tend to accumulate brain Aβ at a faster rate than men as they approach the age at their parent’s onset. The sporadic parental EYO score × APOE interaction was not replicated in the ACS cohort using cross-sectional or longitudinal data. No other association reached significance.

In the WRAP cohort, age alone was associated with cross-sectional CSF Aβ1-42 and PIB-PET data, and the association between age and PIB-PET was still significant when including spo-
Disappointing outcomes from clinical trials performed in individuals with AD dementia and increasing experimental research performed in the preclinical phase of AD suggest that asymptomatic individuals in the preclinical stages of AD might be the best candidates for disease modification therapies. An important challenge facing AD prevention trials is the identification of asymptomatic individuals who could benefit from such therapies.

Our results suggest that proximity to parental symptom onset (or sporadic parental EYO score)\(^2\) might help estimate Aβ biomarker advancement in individuals with a parental history of AD. Specifically, asymptomatic individuals with such a family history were more likely to demonstrate abnormal CSF (PREVENT-AD findings) (Figure 1) and brain (ACS findings) (Figure 2) Aβ biomarkers as they approached their parent’s age at onset irrespective of their own age. Individuals who were closer to their parent’s age at onset also accumulated brain Aβ deposition at a faster rate (WRAP findings) (Figure 3). Of importance, this association seemed to be independent of age-related changes in Aβ burden. Because Aβ burden is known to increase with age\(^20\) and sporadic parental EYO score is based (in part) on individuals’ age, it is reasonable to hypothesize that age itself could have driven our results. However, in the PREVENT-AD, we did not find any association between CSF Aβ1-42 and age, and adjusting for age did not alter the significant association between sporadic parental EYO score and CSF Aβ1-42 (model A, step 1) (eTable 1 in the Supplement). Thus, in our sample, the sporadic parental EYO score appeared to be a better indicator of Aβ variability than age. In addition, although increasing age was associated with increasing Aβ burden in the 2 replication cohorts, this association with sporadic parental EYO score was still present after age adjustment (eTable 2 and eTable 3 in the Supplement). The relatively low mean age of the 3 cohorts (approximately 62 years) might partially explain this age-independent finding. The sporadic parental EYO score may be a better predictor of Aβ burden in late-middle-age individuals, who are less likely to have age-related Aβ, compared with elderly individuals, who have a higher prevalence of Aβ deposition.\(^20\)

Not all individuals with a parental history of AD will develop the disease within their lifespan; thus, we assessed whether the association between sporadic parental EYO score and Aβ pathologic findings is influenced by sex or APOE4 status, 2 important risk factors for AD.\(^4,5\) Of interest, findings from the PREVENT-AD cohort indicated that asymptomatic women had a stronger decrease in concentration of CSF Aβ1-42 than men as they approach their parent’s age at symptom onset.
This interaction of sporadic parental EYO score with sex was replicated in the ACS cohort members with CSF data, where it was additionally supported by PIB-PET imaging findings comparing women and men (Figure 2 and Figure 4). In the ACS cohort members with PIB-PET data, we further found a marginal interaction with sex while looking at the annual rate of Aβ accumulation, suggesting that women might also present a faster rate of Aβ accumulation when approaching their parent’s age at onset. In addition, analyses in the PREVENT-AD cohort highlighted that the association between sporadic parental EYO score and CSF Aβ1-42 was stronger in APOE4 carriers (Figure 1). Consistently, APOE4 carriers in the WRAP cohort accumulated Aβ deposition faster than did the APOE4 noncarriers (Figure 3). Altogether, these results suggest that the association between sporadic parental EYO score and Aβ burden was increased in individuals with a higher risk of developing AD.

These latter results regarding the sporadic parental EYO score × APOE4 status interaction do not make clear whether APOE4 status directly influences the association between Aβ burden and sporadic parental EYO score or whether we found a stronger association between sporadic parental EYO score and Aβ burden in APOE4 carriers only because most noncarriers did not have significant Aβ deposition in these
limited age groups. The population prevalence of Aβ positivity in APOE4 noncarriers without dementia at approximately 60 years of age has been found to be only approximately 10%. An increasing literature suggests that the effect of APOE4 on AD risk is stronger in women than in men. Although our data did not permit us to directly test this 3-way interaction, most APOE4 carriers with low Aβ1-42 and/or high brain Aβ burden were women in the PREVENT-AD and the ACS and WRAP cohorts.

Our finding of an association between proximity to parental symptom onset and Aβ in 3 independent cohorts at approximately 50 to 70 years of age supports the well-accepted idea that brain changes start many years before clinical symptoms. This finding also supports the perspective that AD shares common pathophysiologic features with ADAD, emphasizing that AD is a strongly heritable disorder. In the PREVENT-AD cohort, for instance, we found no association between the age of a person and CSF Aβ1-42 concentration when the age of the parent at symptom onset was not subtracted from the age of the person. We also did not find an association between the parent’s age at symptom onset and CSF Aβ1-42 concentration, which implies that, in the PREVENT-AD cohort, it was really the proximity to the parent’s age at onset that provided information about Aβ levels.

Figure 3. Proximity to Parental Symptom Onset and Amyloid-β (Aβ) Burden in the Wisconsin Registry for Alzheimer Prevention (WRAP) Cohort

P values were obtained with linear regression models controlled for age, sex, and educational level. Analyses that include the sporadic parental estimated years to symptom onset (EYO) score (calculated as the age of the participant at assessment minus the age of the parent at symptom onset) score × APOE status interaction were also controlled for the main effect of APOE status. Unadjusted (raw) data are plotted. APOE4 indicates apolipoprotein E ε4; CSF, cerebrospinal fluid; and PET, positron emission tomography.
Figure 4. Normalized Amyloid-β (Aβ) Burden Levels as a Function of Sporadic Parental Estimated Years to Symptom Onset (EYO) Score in Men and Women in the Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD), Adult Children Study (ACS), Wisconsin Registry for Alzheimer Prevention (WRAP) Cohorts

Regression lines were obtained by calculating z scores in each cohort and Aβ measurement. Values were inverted for cerebrospinal fluid (CSF) so that higher z scores correspond to an increased level of pathologic findings PET indicates positron emission tomography.

Strengths and Limitations
Considering the relatively small sample size of each cohort and that not all individuals with a family history of AD will develop dementia, the sporadic parental EYO score was associated with Aβ burden in all 3 cohorts. Each association was replicated in at least 1 cohort despite the 3 cohorts differing in inclusion criteria (ie, the WRAP cohort included individuals with mild cognitive impairment), the participants being recruited in different regions and countries, and different amyloidosis mechanisms being assessed (ie, decrease of Aβ levels in the CSF, Aβ deposition detection and accumulation over time using in vivo PET) (Figure 4 and eTable 4 in the Supplement).

In this article, we used the proposed term sporadic parental EYO score.1 We acknowledge, however, that this term might not be appropriate for sporadic AD because not all individuals with a family history of sporadic AD will develop AD dementia. Furthermore, although the heritability of age at onset has been estimated to be 67% to 87% in AD,2,3 longitudinal studies will be needed to test whether a score of −10 means that a parent is truly 10 years away from symptom onset of AD. That some individuals (particularly in the ACS cohort) passed the age at onset of their parents, even when exhibiting abnormal biomarkers, might suggest that some individuals have an age at onset that is delayed with regard to their parent’s age at onset. Compared with ADAD, sporadic AD is hypothesized to be multifactorial,21-25 and better lifestyle habits and increased cognitive and brain reserve could play a role in delaying symptom onset.26-28

Conclusions
Overall, the sporadic parental EYO score may help the identification of asymptomatic candidates for clinical trials. For instance, the sporadic parental EYO score could be applied as an inexpensive prescreening method that could enrich trial candidate populations for Aβ positivity. Although the sporadic parental EYO score will never replace in vivo Aβ assessment, limiting PET or CSF screening to individuals who are within a 10-year time window of their parent’s symptom onset could significantly reduce the number of LP or PET procedures performed.

ARTICLE INFORMATION
Accepted for Publication: December 1, 2017.
Published Online: February 26, 2018. doi:10.1001/jamaneurol.2017.5135

Author Affiliations: Department of Psychiatry, McGill University, Montreal, Quebec, Canada (Villeneuve, Gonneaud, Rosa-Neto, Gauthier, Breitner, Poirier); Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (Villeneuve, Rosa-Neto, Gauthier); Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (STOP-AD) Centre, Montreal, Quebec, Canada (Villeneuve, Gonneaud, Pochet Binette, Rosa-Neto, Gauthier, Breitner, Poirier); McGill Centre for Integrative Neuroscience, McGill University, Montreal, Quebec, Canada (Villeneuve, Vogel, Pochet Binette, Rosa-Neto, Breitner); Department of Neurology, Washington University School of Medicine, St Louis, Missouri (Bateman, Fagan, Morris, Benzinger); Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St Louis, Missouri (Bateman, Fagan, Morris, Benzinger); Department of Radiology, Washington University School of Medicine, St Louis, Missouri (Benzinger); Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison School of Medicine and Public Health, Madison (Johnson); Alzheimer’s Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison (Johnson).

Author Contributions: Dr Villeneuve had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Villeneuve, Vogel, Gonneaud, Johnson, Breitner. Acquisition, analysis, or interpretation of data: Villeneuve, Vogel, Gonneaud, Pochet Binette, Rosa-Neto, Gauthier, Bateman, Fagan, Morris, Benzinger, Breitner, Poirier. Drafting of the manuscript: Villeneuve, Vogel, Gonneaud. Critical revision of the manuscript for important intellectual content: All authors. Statistical analysis: Villeneuve, Vogel, Gonneaud, Bateman.
Parental Symptom Onset and Amyloid-β Burden in Alzheimer Disease

Original Investigation Research

Conflict of Interest Disclosures: Dr Villeuneuve reported having a Canada research chair and receiving research support from the Canadian Institutes of Health Research (CIHR), the Alzheimer's Association, the Alzheimer's Society of Canada, and the Brain Canada Foundation. Mr Vogel reported receiving a Venier Canada Graduate Doctoral Scholarship. Dr Gonneaud reported having a postdoctoral scholarship from the PREVENT-AD program. Ms Pichet Binette reported having a PhD scholarship from CIHR. Dr Rosa-Neto reported receiving research support from the CIHR, Canadian Consortium on Neurodegeneration in Aging, the Fonds de recherche du Québec-Santé, Chercheur-Bourricot Junior 2, and the Weston Brain Institute; receiving nonfinancial support from Avid Pharmaceuticals, Enigma Neurpharmaceuticals, Merck & Co and Roche; and serving as a consultant for Merck & Co, Eli Lilly and Company, Palmyra, and Kalgane.

Dr Gauthier reported receiving clinical trial support from Eli Lilly and Company, Roche, TauRx, and Lundbeck; serving as a data and safety monitoring board member for the Alzheimer's Disease Cooperative Study, the Alzheimer's Therapeutic Research Institute, the Alzheimer's Prevention Initiative, and Eisai; and serving as a scientific adviser for AbbVie, ADVantage, Altheon, Axovant, Boehringer Ingelheim, Firalis, Heptares, IntelGen, Kalgane, Eli Lilly and Company, Lundbeck, Novartis, Otsuka, Servier, Sanofi, Schwabe, Takeda, TauRx, TVM Capital, and Roche. Dr Bateman reported receiving research support from the National Institutes of Health, the Alzheimer's Association, Forest Biometrics Research Institute, BrightFocus Foundation, Cure Alzheimer's Fund, Glenn Foundation for Medical Research, the Metropolitan Life Foundation, Biogen, ABBV, Eli Lilly and Company, and the Domenicly Inherited Alzheimer Network-Trial Meeting (DIAN-TU) Pharma Consortium (Biogen Idec, Eli Lilly Pharmaceuticals, Eli Lilly and Company, Hoffman-La Roche, Genentech, Janssen Alzheimer Immunotherapy, Mithridion, Novartis Pharma AG, Pfizer Biotherapeutics R and D, Sanofi, and Eisai); receiving nonfinancial support from Avid Pharmaceuticals, Cogstate, and Bracket; serving as a consultant for IMI, Sanofi, Global Alzheimer's Platform's, Boehringer Ingelheim, and Merck & Co; and serving as an invited speaker for Roche and the Organisation for Economic Co-operation and Development. Dr Fagan reported being on the scientific advisory boards of IBL International and Roche and serving as a consultant for AbbVie, Novartis, and Damir. Dr Morris reported participating in clinical trials of antideumonia drugs from Eli Lilly and Company, Biogen, and Janssen; serving as a consultant for Eli Lilly and Company; receiving research support from Eli Lilly and Company and Avid Radiopharmaceuticals; and receiving funding from grants P01AG039391, P01AG26276, and U01AG032438 from the National Institutes of Health. Dr Benzinger reported receiving research support from the National Institutes of Health, the Alzheimer's Association, the Barnes-Jewish Hospital Foundation, Avid Radiopharmaceuticals, and the DIAN-TU Pharma Consortium (Biogen Idec, Eli Lilly Pharmaceuticals, Eli Lilly and Company, Hoffman-La Roche, Genentech, Janssen Alzheimer Immunotherapy, Mithridion, Novartis Pharma AG, Pfizer Biotherapeutics R and D, Sanofi, and Eisai) and nonfinancial support from Avid Pharmaceuticals. Dr Johnson reported receiving research support from the National Institutes of Health. Dr Bretiner reported having a Canada research chair. No other disclosures were reported.

Funding/Support: This work was supported by Canada research chairs (Dr Villeuneuve and Bretiner), a Canadian Institutes of Health Research foundation grant, a Canada Fund for Innovation, a joint Alzheimer Society of Canada and Brain Canada Research grant (Dr Villeuneuve), an Integrative Neuroscience Program recruitment award (Mr Vogel), a postdoctoral fellowship (Dr Gonneaud), and an Alzheimer Society of Canada and Fonds de recherche du Québec-Santé grant (Ms Pichet Binette). PREVENT-AD was funded by a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the Fonds de recherche du Québec-Santé, an unrestricted educational grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, the Canada Fund for Innovation, and Genome Quebec Innovation Network. The Adult Children Study was supported by grant PO1 AG026276 from the National Institute on Aging (Dr Morris), the American Roentgen Ray Scholar Award (Dr Benzigter), and grant PS0 AG05681 from the Charles F. and Joanne Knight Alzheimer's Research Initiative of the Washington University Alzheimer's Disease Research Center (Dr Morris). The Wisconsin Registry for Alzheimer Prevention was supported by the National Institutes of Health awards ROI AG027161, RO1 AG021155, RO1 AG405447, RO1 AG073639, PS0 AG033514, UL1 TR000427, K23 AG045957, F33AG054115, T32 GM07507, and T32 GM08692, grants from the Alzheimer's Association, Extendicare Foundation, the Northwestern Mutual Life Foundation to the University of Wisconsin-Madison, and donor funds, including the Wisconsin Alzheimer's Institute Lou Holland Fund and contributions from anonymous donors.

Portions of this research were supported by resources at the Massachusetts Alzheimer's Institute, the Wisconsin Alzheimer's Disease Research Center, and the Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.

Role of the Funder/Sponsor: No other disclosures were reported.

Group Information: The members of the Presymptomatic Evaluation of Novel or Experimental Treatments for Alzheimer Disease (PREVENT-AD) Research Group are as follows: Alan Barkun, MSc, MD, CM, McGill University, Montreal, Quebec, Canada; Alan Evans, PhD, STO-AD Centre, Centre for Studies on Prevention of Alzheimer's Disease, Montreal, Quebec, Canada, McGill University, Montreal, Quebec, Canada; and Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; and Doug Insurance and Clinical Center, Montreal, Quebec, Canada; and McGill University, Montreal, Quebec, Canada.

Published online February 26, 2018. © 2018 American Medical Association. All rights reserved.
University Institute Research Centre, affiliated with McGill University, Montreal, Quebec, Canada; Vladimir Fonov, PhD, McGill University, Montreal, Quebec, Canada; and Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Yasser Ituira-Medina, PhD, SToP-AD Centre, Centre for Studies on Prevention of Alzheimer’s Disease, Montreal, Quebec, Canada; McGill University, Montreal, Quebec, Canada, and Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; and Zaven S. Khachaturian, PhD, Khachaturian & Associates Inc, Potomac, Maryland.

Additional Contributions: Cécile Madjar, MSc, SToP-AD Center, Katrina Moulder, PhD, Washington University School of Medicine, and Allen Wenzel, BS, Wisconsin Alzheimer’s Institute helped with data preparation. They were not compensated beyond their regular salaries. We thank the participants for their time and commitment and the PREVENT-AD, Adult Children Study, and Wisconsin Registry for Alzheimer Prevention research staff.

REFERENCES

